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PREFACE

Part of the Project RAND research program consists

of basic supporting studies in mathematics. The mathe-

matical research presented here deals with an inverse

problem in automatic control theory.
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SUMMARY

The authors investigate the inverse of a basic

problem of automatic control theory, namely, being

given an optimal policy and the equations and inequali-

ties representing the constraints of the problem, they

seek the criterion function or functions that lead to

this policy; methods of solution are found in some

simple cases.
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AN INVERSE PROBLEM IN DYNA4IC PROGRAMMING
AND AUTOMATIC CONTROL

1. INTRODUCTION

One of the basic problems of modern control theory

is that of minimizing a functional

(1.1) J(x,y) f g(xy)dt,

0

where x and y are N-dimensional vector functions

subject to the relations

(l.2)(a) x(O) - c,

(b) - h(x,y),

(a) ri~x,y) :ý 0, 1 -1,2,..sk.

Problems of this nature may be attacked by means of

classical variational techniques and extensions Ill, [2],

or by means of dynamic programming. The latter emphasizes

the physical concept of feedback control, since it

attempts to determine directly the optimal policy

v - v(c,T) as a solution of the equation

(1.3) fT = max [g(c,v) + (grad f,h)],
v

where ri(cv) e,, 02,i l •2 ... ,k, and

(1.4) f(cT) - min J(x,y).



In this Memorandum we initiate investigation of an

inverse problem of some importance: "Given the optimal

policy v - v(c,T) and the descriptive equations of

(1.2), what criterion function possesses this optimal

policy?" The study of inverse problems forms a chapter

in the calculus of variations, with emphasis laid on

detertining Lagrangians having a given family of curves

as Euler arcs. (See [4), [5].)

In the simple case where no constraints are present

and h(x,y) m y, we obtain a simple linear partial

diffcrcntial equation which, in principle, determines f

and g. In some cases, this leads to an effective

analytic solution.

2. SCALAR CASE

Consider the problem of minimizing

(2.1) j f g(u,ut)dt,
0

with u(O) = c, where u(t) is a scalar function.

Writing f(c,T) for the minimum value, we obtain in the

usual fashion [3] the equation

(2.2) fT - min [g(c,v) + vf ].
v

This in turn leads to the two equations
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(2.3) fT - g(c,v) + vfcI,

G = gv I+ fc'

or

(2.4) fT - g - vg9v

fc = -- gv

Eliminating f by partial differentiation, we have the

equation

(2.5) (g - Vgv)c -(gv)T

which, in principle, determines g, given the function

v(c,T).

This equation in g involves second partial

derivatives with respect to v and is not immediately

tractable.

3. THE FIRST-ORDER EQUATION FOR fT

Returning to (2.3), let us proceed in the following

fashion. Write

(3.1) (fT - Vfc)T - g(cv)T - gvV -- VTc,

upon taking account of the second equation of (2.3).

Hence,

(3.2) fT- V~fc - VfoT - VTfc'



or

S(3.3) (T)T - v(fT)c -O

a first-order linear equation for fT' given the

function v = v(c,T). Once f is determined, we

obtain g from (3.3).

As is immediately seen, the determination of f

is quite simple if we ask for a criterion function which

yields an optimal policy of the form v(c,T) = #(c)k(T).

4. MULTIDIMENSIONAL CASE

Consider the multidimensional problem. The basic

equation is

(4.1) fT = min [g(c,v) + (grad f,v)].

I) V

In terms of the components, we obtain the equations

N
(4.2) fT = g(cv) + Z f v.,±=l c ii

0 gV+ fO=~ g +fci

which yield, in exactly the same fashion as before, the

equation

N(4.3) (fT) - Z(f liv.



Again, the determination of fT given thatIT
v(c,T,) - ip(c)k(T) (where k(T) is a scalar and (p(c)

is a vector), 1.8 reduced to a conventional problem in

first-order partial differential equations which can be!

treated by means of characteristics or otherwise.

5. DISCUSSION

Finally, let us note that if one of the significant

functions of a variational problem is given, it is

frequently possible to form equations for the others in

terms of it. For example, if the integrand g(c,v)

is given, then It is possible to find a first-order

partial differential equation for the optimal control

function v(c,T). In fact, upon expanding, we see that

equation (2.5) yields the desired relationship. These

observations have interesting consequences in analytical

dynamics and control theory which will be discussed

elsewhere.
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